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Problem Statement

What are we doing ? The Aerodynamics of lift generation.

Why are we doing it ? The generation of lift is important in the
aircraft industry, wind turbines and in nature with birds and insects.

How are we going to do it? Firstly we going to consider the thin
aerofoil. Discuss circulation in detail, establishing a connection
between the vortex and circulation.

Understanding the mechanism of how mosquitoes generate lift.
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Background

In potential flow theory, the flow around an aerofoil is considered
irrotational and incompressible. The velocity potential ϕ and the stream
function ψ are used to describe the flow.

v = gradϕ (1)

Vx =
∂ϕ

∂x
, Vy =

∂ϕ

∂y
. (2)

divv = 0, then there exist a function ψ(x , y) such that

Vx =
∂ψ

∂y
, Vy = −∂ψ

∂x
(3)
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Background

Then

w(z) = ϕ(x , y) + iψ(x , y) (z = x + iy) (4)

satisfies the Cauchy - Riemann equations

∂ϕ

∂x
=
∂ψ

∂y
,

∂ϕ

∂y
= −∂ψ

∂x
(5)

and is differentiable in the complex plane. The function w(z) is called
the complex potential.

Z. Xulu, K.Raseale, T. Mathivha, & A. Gwala (Your Institution)Aerodynamic February 2, 2025 5 / 42



Circulation

Let C be a closed curve lying in the fluid region. The circulation Γ
round C is defined by

Γ =

˛
C
v · ds, (6)

By Stoke’s Theorem

Γ =

ˆ
S
(curlv) · ndS (7)

provided the region S spanned by the closed curve C lies entirely in the
region of the fluid flow.
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Circulation

Figure: Two-dimensional irrotational flow

For any closed curve, C1, that does not enclose the wing, Γ = 0 since
the flow is irrotational.

For any closed curve, C2, that encloses the wing, the Stokes theorem
does not apply and Γ ̸= 0.
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Circulation

Figure: Circulation round a closed circuit that does not enclose the wing.

Γ3 − Γ4 = 0, Γ3 = Γ4 (8)
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Circulation

According to Kelvin’s theorem, if the fluid is inviscid and
incompressible with zero body force then:

D

Dt
Γ = 0 (9)

Γ1 = 0, V = 0

Figure: Aerofoil in a fluid at rest
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Circulation

Γ1 =

˛
c1

v · ds = 0 since v = 0. (10)

Figure: Formation of Starting Vortex
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Circulation

The whole curve is C2 and it consists of the same fluid particles as
C1. Since,

DΓ
Dt = 0.

then Γ1 = Γ2 = 0, (Γ1 = 0)

Since the cut is common to c3 and c4, and transvered in the opposite
direction, Γ3 + Γ4 = 0, Hence Γ4 = −Γ3

The starting vortex is anticlockwise, hence Γ3 > 0. Thus, Γ4 < 0.
The circulation around the aerofoil is negative.
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Kutta-Joukowski Lift Theorem

Figure: Two-dimensional body with cross section in closed curve C.

Consider steady flow past a two-dimensional body with cross-section
the closed curve C . The flow is uniform at infinity with speed U in
the x direction. The circulation around the body is Γ. Then:

Fx = 0, Fy = −ρUΓ (11)
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Vortex Flows [1]

Flow in which all the streamlines are concentric circles about a given point.

Figure: Vortex flow

vr = 0, vθ =
c
r , vz = 0. (c is a constant)

For an incompressible fluid (cylindrical polar coordinates) the
condition

∇ · v =
1

r

∂

∂r
(rvr ) +

1

r

∂

∂θ
(vθ) +

∂vz
∂z

= 0 (12)

is satisfied.

The flow is irrotational for r ̸= 0.
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Vortex Flows : Incompressible Irrotational Flow

Circulation around a given streamline of radius r

Γ =

˛
c
v · ds

=

ˆ 2π

0

c

r
r dθ

= 2πc . (13)

Thus

c =
Γ

2π
. (14)

It follows that

vr = 0, vθ =
Γ

2πr
, vz = 0. (15)
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Vortex Flows : Vortex Filament/Sheet

Figure: Edge view of vortex
sheet

The small section of vortex sheet of strength γds induces an infinitesimal
velocity dv , (dv = vθ) at point P. It follows from (15) that:

dv =
γ(s)ds

2πr
(16)
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Vortex Flows : Vortex Filament/Sheet

The circulation around the vortex sheet is thus

Γ =

ˆ b

a
γ(s)ds (17)

Considering the vortex sheet
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Vortex Flows : Vortex Filament/Sheet

One has

Γ =

˛
c
v · ds

∴ dΓ = (u2 − u1)ds + (v2 − v1)dn. (18)

As dn → 0,

dΓ = (u2 − u1)ds (19)

since Γ = γ(s)ds,

γ(s) = (u2 − u1).
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Kutta Condition

Types of trailing edges:

Trailing edge with a finite angle

Cusped trailing edge

Figure: Trailing edge with finite angle and cusped trailing edge

γ(s) = V2 − V1 (20)

Finite angle: V1 = V2 = 0, γ(TE ) = 0 (TE = trailing edge).
Cusp: V1 = V2 ̸= 0, γ(TE ) = 0.
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Thin Aerofoil Theory

A thin aerofoil is simulated by a vortex sheet placed along the camber line.

Figure: Vortex sheet on the camber line
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Thin Aerofoil

The aerofoil is thin . We make the approximation of putting the vortex
sheet on the chord line. Thus γ = γ(x).

The camber line is a streamline of the flow

Kutta condition γ(c) = 0

Figure: Vortex sheet on chord line
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Thin Aerofoil Theory

Let u∞n be the component of freestream velocity normal to the camber
line. It can be shown that approximately

u∞n = U∞(α− dz

dx
) (21)
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Thin Aerofoil

Let
w’(x) = component of velocity normal to camber line induced by the

vortex sheet
w(x) = component of velocity normal to chord line induced by the

vortex sheet
For a thin aerofoil,

w ′(s) = w(x)

For an infinitesimal vortex of strength γ(ξ)dξ located ξ away from the
origin along chord line:

dw =
γ(ξ)dξ

2π(x − ξ)
(22)

(23)

∴ w(x) =
1

2π

 c

0

γ(ξ)dξ

x − ξ
(24)
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Thin Aerofoil

For camber line to be a streamline:

u∞n + w ′(s)︸ ︷︷ ︸ = 0

But w ′(s) = w(x) (thin aerofoil). Thus

u∞n = −w(x)

1

2π

 c

0

γ(ξ)dξ

ξ − x
= (α− dz

dx
)U∞ (25)
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Summary for Thin Aerofoils

In this work, we will be solving the aerofoil equation

1

2π

ˆ c

0
− γ(ξ)dξ

ξ − x
=

(
α− dz

dx

)
U∞ (26)

subject to the Kutta condition

γ(c) = 0 (27)

We derive the circulation and lift from the solution to aerofoil
equation:

Γ =

ˆ c

0
γ(x)dx (28)

L = −ρU∞Γ (29)

Z. Xulu, K.Raseale, T. Mathivha, & A. Gwala (Your Institution)Aerodynamic February 2, 2025 24 / 42



Aerofoil

Figure: Representing the Aerofoils
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Asymmetrical Aerofoil

For the asymmetrical aerofoil,

z(x) = εx(c − x). (30)

Thus

dz

dx
= ε(c − 2x), (31)

and the aerofoil model reduces to

1

2π

ˆ c

0
− γ(ξ)dξ

ξ − x
= (α− ε(c − 2x))U∞, (32)

γ(c) = 0, (33)

Γ =

ˆ c

0
γ(x)dx (34)

L = −ρU∞Γ (35)

Z. Xulu, K.Raseale, T. Mathivha, & A. Gwala (Your Institution)Aerodynamic February 2, 2025 26 / 42



Asymmetrical Aerofoil

Let

ξ∗ = ξ − c

2
, and x∗ = x − c

2
. (36)

The aerofoil equation becomes

1

2π

ˆ c
2

− c
2

− γ(ξ∗)dξ∗

ξ∗ − x∗
= (α+ 2εx∗)U∞. (37)

Further we let

ξ∗ =
c

2
cosθ, and x∗ =

c

2
cosϕ. (38)

Now,the aerofoil equation becomes

1

2π

ˆ π

0
− γ(θ)sinθdθ

cosθ − cosϕ
= (α+ εc cosϕ)U∞. (39)
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Asymmetrical Aerofoil

We make an expansion of the form

γ(θ) =
1

sin θ

∞∑
n=0

γn cos nθ, (40)

where the γ′ns are constants. Equation (39) becomes

1

2π

∞∑
n=0

γn

ˆ π

0
− cos nθdθ

cosθ − cosϕ
= (α+ εc cosϕ)U∞. (41)
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Asymmetrical Aerofoil

We prove later that,

ˆ π

0
− cos nθdθ

cosθ − cosϕ
=
π sin nϕ

sinϕ
. (42)

Thus, equation (41) becomes

∞∑
n=1

γn sin nϕ = (2α sinϕ+ εc sin 2ϕ)U∞. (43)

We equate the coefficiences of sin nϕ for n ≥ 1.

sinϕ : γ1 = 2αU∞

sin 2ϕ : γ2 = εcU∞

sin nϕ, n ≥ 3 : γn = 0.
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Asymmetrical Aerofoil

Thus

γ(ϕ) =
1

sinϕ
[γ0 + 2αU∞ cosϕ+ εcU∞ cos 2ϕ]. (44)

For a finite solution as ϕ approaches zero. we require the:

γ0 + 2αU∞ + εcU∞ = 0. (45)

(46)

Thus

γ(ϕ) = − U∞
sinϕ

[2α(1− cosϕ) + εc(1− cos 2ϕ)]. (47)

By L’Hopital’s rule , the Kutta condition γ(0) = 0 is identically satisfied.
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Asymmetrical Aerofoil

Substituting γ(ϕ) into

Γ =

ˆ c

0
γ(θ)sin(θ)dθ

we obtain for the circulation

Γ = −cπU∞(α+
εc

2
). (48)

Thus the lift is

L = −ρU∞Γ (49)

= πρcU2
∞(α+

εc

2
). (50)
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Symmetrical Aerofoil

For the symmetrical aerofoil, z(x) = 0. Thus dz
dx = 0, and the aerofoil

model reduces to

1

2π

ˆ c

0

γ(ξ)dξ

ξ − x
= αU∞ (51)

γ(c) = 0 (52)

Γ =

ˆ c

0
γ(x)dx (53)

L = −ρU∞Γ (54)

The solution is obtained by putting ε = 0 in (48) and (50)

Γ = πcU∞α

and
L = πcρU2

∞α

Camber increases lift.
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Evaluation of Integral

ˆ π

0
− cos nθdθ

cosθ − cosϕ
=
π sin nϕ

sinϕ
(55)

Let

Im(ϕ) =

 π

0

cosmθdθ

cos θ − cosϕ
(56)

It follows for m ≥ 1

Im+1(ϕ) + Im−1(ϕ) =

 π

0

cos(m + 1)θdθ

cos θ − cosϕ
+

 π

0

cos(m − 1)θdθ

cos θ − cosϕ
. (57)

But

cosA+ cosB = 2cos
1

2
(A+ B)cos

1

2
(A− B).

Hence

Im+1(ϕ) + Im−1(ϕ) = 2

 ϕ

0

cosmθcosθ

cosθ − cosϕ
dθ
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Evaluation of Integral

Im+1(ϕ) + Im−1(ϕ) = 2

ˆ π

0
cosmθdθ + 2cosϕIm(ϕ)

and therefore

Im+1(ϕ)− 2cosϕIm(ϕ) + Im−1(ϕ) = 0, m ≥ 1. (58)

Difference equation for Im(ϕ).
Initial conditions:

m = 0 : I0(ϕ) =

 π

0

dθ

cosθ − cosϕ
= 0

Integrated by making transformation t = tan θ
2 .

m = 1 : I1(ϕ) =

 π

0

cosθdθ

codθ − cosϕ
=

ˆ π

0
dθ+cosϕ

 π

0

dθ

cosθ − cosϕ
= π
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The Important result

Let : Im(ϕ) = Aλm, A = constant

λ2 − 2cosϕλ+ 1 = 0

λ1 = e iϕ, λ2 = e−iϕ

Thus

Im = A1e
imϕ + A2e

−imϕ

= c1cos(mϕ) + ic2sin(mϕ) (c1 = A1 + A2, c2 = A1 − A2)

Initial conditions:
I0 = 0, I1 = π

c1 = 0, c2 = − iπ

sinϕ

hence

Im(ϕ) =
πsinmϕ

sinϕ
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Important Result

 π

0

cosmθdθ

cosθ − cosϕ
=
πsinmϕ

sinϕ
(59)
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Rotation of Wind Turbine blades

Figure: Caption
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Rotation of Wind Turbine blades : Example

Blade of length 80m makes one full rotation in 10s. The wind speed is
10m/s.

The angular velocity =
2π

10
radians per second (60)

Tip speed velocity = 16πm/s = 500m/s (61)
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Aerofoil dynamics of Mosquito Lift Generation

Leading edge vortices are the primary mechanism lift generation for
small insects, including mosquitoes.

This mechanism is critical for hovering flight, enabling mosquitoes to
remain stationary

Trailing edge vortices are equally essential for maintaining
aerodynamic balance and energy efficiency during flight

During the upstroke, the trailing edge plays a role in capturing energy
from the wake left behind by the previous downstroke. This wake
capture mechanism enhances flight efficiency.

Rapid rotations of the wings enhance lift by creating an additional
circulation.

The mosquitoes have the longest wings of all the insects for their
body size.

The mosquitoes flap their wings with a frequency up to 800Hz
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Conclusions

The aerofoil model was derived.

The model was solved for both a symmetrical and an asymmetrical
aerofoil.

It was observed that whenever the circulation is negative then the lift
is positive.

The greater the wind speed, the greater the magnitude of the lift.

The greater the air density, the greater the magnitude of the lift.

Without changing the angle of attack the effect of a non-zero camber
line is to increase the lift.
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